

002

23/07/2021 08.30 AM - 11.30 AM

ORDINARY LEVEL NATIONAL EXAMINATIONS, 2020-2021

SUBJECT: CHEMISTRY I

DURATION: 3 HOURS

INSTRUCTIONS:

- 1) Write your names and index number on the answer booklet as they appear on your registration form and **DO NOT** write your names and index number on additional answer sheets if provided.
- 2) Do not open this question paper until you are told to do so.

3)	This paper consists of three sections A , B and C .	
	Section A: Attempt all questions	(55 marks)
	SECTION B: Attempt any three questions.	(30 marks)
	SECTION C: Attempt only one question	(15 marks)
4		

- 4) You do not need the Periodic table.
- 5) Silent non- programmable calculators may be used
- 6) Use only a **blue** or **black** pen.

Section A: Attempt all questions in this section (55 marks)

- 1) Hydrated iron sulphate, FeSO₄.7H₂O undergoes decomposition when heated to form iron sulphate and water. When heated further, the FeSO₄ decomposes to form Fe₂O₃, sulphur dioxide and sulphur trioxide.
 - a) Write a balanced chemical equation for the thermal decomposition of FeSO₄.
 (2 marks)
 - b) State the colour changes that occur when FeSO₄.7H₂O decomposes to FeSO₄ then to Fe₂O₃. (3 marks)
- 2) A student uses 100 cm³ of a 0.2 mol dm⁻³ sodium hydroxide solution to react with excess sulphuric acid.
 - a) Calculate the number of moles of NaOH contained in 100 cm³ of solution.
 (2 marks)
 - b) Calculate the mass of sodium sulphate crystals that are formed after evaporation of the resultant solution. (2 marks) Equation:

 $H_2SO_4_{(aq)} + 2NaOH_{(aq)} \longrightarrow Na_2SO_4_{(aq)} + 2H_2O_{(l)}$

(Atomic mass Na=23, S =32, O=16 H=1)

- 3) a) Sodium sulphate crystals are obtained by reacting H₂SO_{4(aq)}, with 2NaOH_(aq). Using appropriate reagents or other means, describe a method that can be used to test (identify) the sulphate ions in Na₂SO₄ indicating the observations for a positive test. (3 marks)
 - b) Pure oxygen for industrial use can be obtained from atmospheric air. State one use of oxygen in industry and one of its uses for medical purposes. (2 marks)
- 4) In the upper atmosphere, there is a layer of ozone surrounding the earth.a) Explain the importance of this layer in terms of human health.

(2 marks)

- b) State the type of chemical substances that destroy the ozone layer. (1 mark)
 - Aluminium is a metal of group IIIa of the periodic table.
- a) Using Bohr model of the representation of electrons on shells, draw the structure of aluminium atom. (2 marks)
- b) Write a balanced chemical equation of the reaction that takes place when aluminium reacts with sulphur (S). (2 marks) (Atomic number: Al=13, S=16).

5)

Sodium atom loses 1 electron and sulphur accepts 2 electrons to form 6) ions. a) Deduce the chemical formula of the compound formed between sodium (2 marks) and sulphur. b) Discuss the socio-economic importance of sodium compounds in our (2 marks) society. (Atomic number: Na=11, S=16) When calcium reacts with water, hydrogen gas is evolved and an alkaline 7) solution is formed. a) Write a chemical equation of the reaction between calcium and water; (2 marks) include state symbols. b) Explain effects of acid rain to buildings and monuments which are (2 marks) constructed in calcium carbonate compound. 8) Magnesium is an alkaline earth metal; copper is a transition element. a) Explain why copper is preferred to be used in coating (cover) monetary coins rather than magnesium. (2 marks) b) Write a balanced chemical equation of combustion of magnesium in (1 mark)oxygen gas. In an experiment, CO₂ gas was dissolved in a test tube of cold water; blue 9) and red litmus papers were put in the resultant mixture. a) Indicate the litmus paper that changed its colour. (1 mark)b) State 2 uses of CO_2 gas by man on a large scale. (2 marks) 10) State a reagent that you would use to differentiate between each of the pair of compounds and give an observable change for a positive test: a) Sodium nitrate, NaNO₃ and sodium chloride, NaCl. (2 marks) b) Zinc II nitrate Zn $(NO_3)_2$ and aluminium III nitrate Al $(NO_3)_3$. (2 marks)11) Alkanes are members of a homologous series of saturated hydrocarbons with the general formula C_nH_{2n+2} . a) Write a balanced chemical equation of the reaction of combustion of an alkane with 5 carbon atoms. (2 marks) b) Write a chemical equation for the combustion of C₃H₈ in excess (2 marks) oxygen. Silicon dioxide has a similar structure to diamond. 12) a) Suggest the reason why silicon dioxide does not conduct electricity. (2 marks) (2 marks) b) Give 2 uses of diamond on a large scale.

- 13) A gas of known identity as X diffuses at a rate of 83.3 ml/ second in a diffusion apparatus in which carbon dioxide diffuses at a rate of 102 ml/ second. Calculate the molecular mass of gas X. (4 marks) (Molar mass: CO₂ = 44 g/mole)
- 14) a) Write two uses of strong acids. (2 marks)

b) Give the difference between a strong base and a weak base. (2 marks)

SECTION B: Attempt any three questions in this section (30 marks)

- 15) a) It takes 243 seconds for 4.46 x 10⁻⁵ mole of Xenon (Xe) to diffuse through a tiny hole. What time will it take 4.46 x 10⁻⁵ mole of Neon (Ne) to diffuse through the hole under the same conditions? (4 marks)
 - b) Two cotton plugs, one moistened with NH₃ and another with HCl are simultaneously inserted into opposite ends of a glass tube that is 87dm length, a white ring of NH₄Cl forms where gaseous NH₃ and gaseous HCl first meet (come into contact). It takes 80 seconds for NH₃ gas to move distance Y, HCl gas moves in this distance Y in 117.2 seconds. (Molar mass: $NH_3 = 17$ g/mole, HCl = 36.5 g/mole)
 - (i) Determine how much faster NH₃ diffuses than HCl (percentage rate of NH₃ to the rate of HCl). (1 mark)
 - (ii) Calculate the distance travelled by NH₃ gas to meet HCl gas.

(5 marks)

- A student added 8.0 g of magnesium to an excess of a 0.5 mol dm⁻³ sulphuric acid solution to react in a container.
 - a) Calculate the number of moles contained in 8.0 g of magnesium.

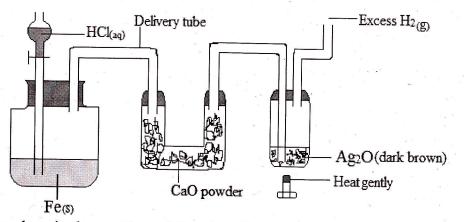
(2 marks)

- b) Calculate the maximum volume of sulphuric acid that reacted with all the 8.0 g magnesium. (2 marks) (Atomic mass, Mg = 24).
 Equation of reaction: Mg_(s) + H₂SO_{4(aq)} → MgSO_{4(aq)}+ H_{2(g)}
- c) A hydrated zinc sulphate; ZnSO₄XH₂O contained 56.09% of ZnSO₄ by mass. Determine the value of X in the equation (X=number of moles of water of crystallization). (4 marks)

(Atomic mass: Zn=65, S=32, O=16, H=1)

- d) Write a chemical ionic equation for the reaction between Zn²⁺ ions and OH⁻ ions in aqueous solution using:
 - (i) Little of OH- solution.(ii) Excess of OH- solution.

(1 mark) (1 mark)

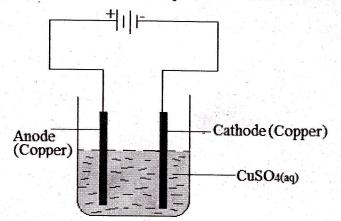

NESA 2020-2021

002Page 4 of 8

- 17) a) Write a chemical equation of the reaction between aluminium and water.(2marks)
 - b) Explain why aluminium metal is used to make overhead electric cables on streets. (2 marks)
 - c) Aluminium reacts with chlorine according to the following equation: 2 Al + $3Cl_2 \rightarrow 2AlCl_3$
 - (i) Calculate the mass of AlCl₃ produced when 5.4g of aluminium reacts completely with excess chlorine. (3 marks)
 - (ii) Calculate the volume of Cl₂ gas required to react with 5.4g of aluminium at room temperature and pressure.
 (3 marks)

(1 mole of a gas occupies 24dm³ at room temperature and pressure, atomic mass of Al=27. Atomic mass of Cl=35.5 g/mol)

18) Silver oxide, Ag₂O can be reduced by hydrogen gas H₂; study the set up diagram below and answer the questions that follow:



- a) Write a chemical equation of the reaction that takes place when Silver oxide reacts with hydrogen gas. (2 marks)
- b) Explain why hydrogen gas reduces silver oxide but cannot reduce zinc oxide.
 (2 marks)
- c) State the role of CaO powder in the tube.

(1 mark)

- d) Fe reacts with dilute HCl to produce H_2 .
 - (i) State the method of collection of H₂ gas in the above apparatus set up. (1 mark)
 - (ii) Indicate one test for the excess H₂ gas and give the observation for a positive test. (2 marks)
- e) Zinc oxide can be reduced by carbon on heating.
 Write a chemical equation of the reaction between ZnO and C. (2 marks)

19) Study the set-up diagram below for the electrolysis of aqueous copper sulphate solution and answer the questions that follow:

a) Write a chemical equation for the reaction that takes place at the:
 (i) Anode (1.5 marks)

(ii) Cathode.

(1.5 marks)

- b) Describe the observable changes on the volume of both electrodes as the reaction proceeds. (2 marks)
- c) Indicate the direction of flow of electrons in the external circuit.

(1 mark)

- d) Suggest one application of copper sulphate electrolysis on a large scale. (1 mark)
- e) Describe what would happen to the reactions in the beaker of CuSO₄ electrolyte if copper electrodes were replaced by carbon electrodes.

(3 marks)

SECTION C: Attempt only One question in this section (15 marks)

 20) A 0.095 g impure sample of K₂CO₃ is dissolved in enough water ml of solution X. The 20.0 ml of solution X is put into an Erlenn and 20 ml of a 0.17 mole/litre HCl is added. The resulting solution is titrated against a 0.1048 mole/litre Nature of NaOH required to neutralize excess HCl is 24.16 m Equations: Preparation of solution X: K₂CO_{3(aq)} + 2HCl_(aq) → 2KCl_(aq) + CO_{2(g)} During titration: HCl_(aq) +NaOH_(aq) → NaCl_(aq) + H₂O_(l) 	neyer flask OH solution ml.
a) State the colour change of phenolphthalein indicator in the flawhen the end-point of titration is reached.	ask solution (1 mark)
b) Calculate the number of moles of NaOH in 24.16 ml.	(2 marks)
c) Calculate the number of moles of HCl that react with NaOH in	n the flask. (2 marks)
d) Calculate the number of moles of HCl (0.17 mole/litre) in 20.	0 ml. (2 marks)
e) Deduce the number of moles of HCl that react with K_2CO_3 .	(1 mark)
f) Calculate the number of moles of K_2CO_3 present in 0.048 g s	ample. (2 marks)
g) Calculate the actual mass of K_2CO_3 in 0.095g of its impure s	ample. (2 marks)
h) Calculate the percentage composition by mass of K_2CO_3 in 0. impure sample. (Atomic mass: K=39, C=12, O=16)	095 g (3 marks)
 a) Give the names of the following compounds: (i) (i) (ii) H H H H H H H H H H H H OH H 	(2 marks)
b) State 2 physical properties of alcohols.	(1 mark)

c) Write a balanced chemical equation for:
(i) Combustion of CH₃CH₂CH₂OH in enough oxygen. (2 marks)

002Page 7 of 8

(ii) Oxidation of CH_3CH_2OH by $K_2Cr_2O_7$ in acidic (H_2SO_4) medium.

(2 marks)

d) State two uses of alcohols on a large scale. (2 marks)

e) Describe two health hazards caused by drinking too much alcohol. . (4 marks)

 f) Explain why alcohols are not used so often as fuel in vehicle engines as much as alkanes.
 (2 marks)